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Note 

Two Series Representations of the Integral 
s$ exp[--s(y + y cos ly -z sin y)] dy 

Many problems that arise in transport theory for the motion of charged particles involve 
the calculation of integrals of exponential type. Three independent parameters appear in the 
integral considered. Two analytic series equivalent to the integral are presented, one of which, 
involving Bessel functions, is related to a Kapteyn series. Numerical calculations have been 
performed over a wide range of parameter values and compared with various quadrature 
routines. The analytic series proved generally more accurate and efficient. 

1. INTRODUCTION 

The integral defined by 

m, 23 s) = lorn exp [-s(v + y cos ye - z sin v/)] do, (1) 

where s > 0, y, z E R, has arisen in a recent paper on transport theory for charged 
particles in electric and magnetic fields [I]. The integral (1) is proportional to the 
distribution function of test particles that are subject to magnetic and electric fields 
and suffer loss by collision with particles in a host medium. A simple analytical 
expansion of (1) is sought in order to ascertain the effect of the magnetic and electric 
fields on the velocity distribution. For example, when the electric field is absent, 
parameters y and z are zero. Then 

I(O,O, s) = s-l, 

and the velocity distribution of particles is Maxwellian. 
When y only is zero, the integral 

(2) 

1 
cc 

I(O,z,s)= exp[--s(yl- z sin w)] dv (3) 0 

can be expressed in two alternative series forms [2]. They are 

I(‘, zy ‘I= ‘-’ + .J!, cs2 + 2*)(s’z~~:;ill, ~~2 + 4m2) 

+,f 

Z2m-1S2m-1 

m=l (s2 + 12)(s2 + 32) **- (s2 + (2m - 1)2) ’ 
s > 0, ZER, (4) 
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=.I? -l + 2s 5 J,(nz)/(n’ + s2), s>o, /z/< 1. c-9 
n=1 

Expression (5) is an example of a Kapteyn series CFzo a,J,(nzj [2] in which J, is 
the Bessel function of the first kind of order it and the a, are constants. In this paper 
we obtain corresponding series for (1) in which the three parameters y, z, s are non- 
zero, 

2. SERIES REPRESENTATIONS 

Analogous to (4) we have, equivalent to (1) 

I(y, z, s) = s-’ -I- (I(0, r, s> -s-l) e-‘&t 2 (-1)” PPK,,Jm!, 
rn=l 

where 

r = ( y2 + z*)~/~, s = tan-‘(y/z), -n/2 < E < 7112, m 
K, = ~~‘(1 - eCsE), K, = (s sin E - cos E + e-s”)/(s2 + I), et 

and where K, satisfies the recurrence relation 

f, = sinme E (s sin E - m cos e)/(s’ + m’) + m(m - l)f,-J(s” + m’), 09 

valid for s > 0, YE R. We will refer to (6) as the algebraic series. The alternative 
series representation of (1) analogous to (5) is 

I(y, z, s) = s-l + 2 -f [{s cos(n(s -y)) 
I tl=l 

+ n sin(n(s - y))}/(s’ + n2)] J,(w) 
1 

c?-‘~, (IO> 

valid for s > 0, Irl < 1. We will refer to (10) as the Bessel series. 

3. DERIVATION OF THE SERIES 

On making the substitutions (7), integral (1) may be transformed, ~~tti~~ 
w - E = 0 into 

J 

co 
I( y, z, s) = e-” e-s(O-rsin 0) do, 

-8 

which is similar in form to (3) except for the non-zero lower limit. 
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To establish (6) expand (11) in the form 

m *msm a, 
I(Y, 2, S) = eCss c 71 eese sinm 0dB. 

m=O m. --E (12) 

Next divide the range of integration from --E to 0 and 0 to co. For the infinite range 
we have already [2] 

(13) 
i 

a, 

e -se sin2m 8 d0 = 
(2m)! 

0 s(s2 + 22)(s2 + 42) ..- (s2 + 4m2) ’ 

I 

co 
e -Se sin2m-1 $ de = (2m - l)! 

(s2 + 12)(s2 + 3’) e-e (s* + (2m - I)*) ’ (14) 
0 

from which, incidentally, (4) may be verified. The contribution to I from the finite 
range of integration leads directly to the third term in (6). 

To establish (10) we utilise a result in [2], namely, 

(1 -rcos8)-‘= 1+2 -f J,(nr)cosn~, 14 < 1, (15) 
n=l 

4 = 6 - r sin 0. (16) 

On multiplying (15) by e-“@ and integrating with respect to 4 from a to co, we 
obtain 

00 
e-s(8-rsine) do= $-leS(&-Y) 

+ 2 .f J&r) ja e-“” cos n# d#, (17) --E n=l a 

where 

a = --E + r sin s. (18) 

Straightforward evaluation of the integral on the right hand side of (17) completes the 
proof. On setting y = E = a = 0 in (17) we recover result (5). 

4. COMPARISON OF THE SERIES WITH NUMERICAL QUADRATURE 

It is not necessarily true that series expressions can be evaluated more swiftly and, 
accurately than numerical quadrature. In order to determine the best choice, 
calculations have been performed both for the series and various equivalent 
quadrature routines over a wide range of parameter values. All computations were 
carried out on an ICL 1904s machine at the University of Strathclyde, using 
ALGOL 68. We consider the simpler problem (3) before the general case (1). 
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(a) Two Parameter Problem; y = 0, low3 < z, s < i03 

Subject to the practical restriction sz < 150 to prevent overflow, calculations were 
made over the range given above at all orders of magnitude from 10P3 to 1 
and z. The target relative accuracy was 10-i’. A measure of efficiency of each 
calculation is the number of terms in the series, or number of function evaluati 
the quadrature routine, needed to reach the target accuracy. This is displayed 
the NT columns in Table I for each method used. In any given parameter range the 
worst result is displayed. .For example the algebraic series required at most 4 terms 
over the range z = 10P3, 10P2, IO-’ s = 10P3, compared with 88 terms at most Over 
the range z = 1, 10, IO*, s = 1. Wheie no entry appears in an NT column the target 
accuracy was not reached in the permitted number of terms. In this case under the 5’F 
column the number of reliable significant figures that agree with at least one other 
method is shown. 

For the algebraic series (4), provided that z < 10-l the iVT value increased only 
slowly through six orders of magnitude for s. For large z however the NT value rises 
rapidly as s increases. The Bessel series (5) is limited by the convergence rcqui~eme~t 
/Z < I. The elegance of the series masks the fact that J,(nz> needs to be Kiowa 
accurateiy. The Bessel function satisfies the recurrence relation [3] 

TABLE I 

Comparison of Numerical Methods: Two Parameter Problem 

Series Quadrature 

Algebraic Bessel Legendre 1 Legendre 2 Laguerre Patterson 
Integration range -+ [O, 2x1 [O, el to, ml IO, el 

Maximum no. terms -+ 64 64 48 2.55 
z= 107 s = io8 

range ofy 6 NT NT NT SF NT SF NT SF MT SI; 

[-3,-l] 
IO, 3: 
[-3,-l] 
io, 31 
j-3, -1 I 
[OY 31 
l-3, -11 
[O> 21 
L-3, -11 
1% 1 I 
I-3, -I] 

,-3P-1, 

-3 
-3 
-2 
-2 
-1 
--i 

0 
0 

4 5 16 4 3 4 
9 - 64 1 0 2 
4 6 16 5 3 3 

21 - 64 0 0 i 
5 8 16 4 2 255 

87 - 4 0 0 0 
6 10 32 64 48 121 

88 - 4 0 1 2 
8 12 64 32 16 63 

81 - 64 64 48 63 
8 12 9 32 8 63 

61 - 64 64 8 9 
8 12 0 64 16 63 
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for each fixed N. Three-term homogeneous recurrence relations have been considered 
in [4] from which we deduce that J,(Nz) may be computed by backwards recursion 
when 

p = (Nz/2n)2 6 1, (20) 

or by recursion in either direction when /I >> 1. For n > N and z < 1 (20) is 
reasonably satisfied so each J,(Nz) was computed by backwards recursion from a 
sufficiently large index m. A normalising condition [3, Fq. 9.1.461 

1 = J,(x) + W,(x) + U,(x) + ‘** (21) 

was used to scale the computed functions correctly. The calculations were repeated 
by advancing m until successive answers for J,(Nz) reached the desired accuracy. As 
a check test values obtained in this way were compared with tabular entries in [3]. 
For z < 10-l convergence was rapid and comparable with the algebraic series, seen 
in Table I. At z N 1, however, J,(nz) = 0(10-l) for all n and convergence was too 
slow for practical use, as might have been expected. 

Integral (3) contains an integrand of the form exp(--sg(y)), where 

g(W)=ly--zsinv. (24 

For z ( 1 g(v) is monotonic increasing from zero; hence the integrand is an exponen- 
tially decreasing function of w. At z = 1, 6g/@ = 0 when v/ = 2~171, n integer, and the 
integrand is non-increasing. For z > 1 g(v) is stationary when 

cos y=z-1. (23) 

In this case there will be intervals of w over which the integrand becomes an exponen- 
tially increasing function, interlaced with exponentially decreasing behaviour. For 
z % 1 these oscillations persist until w N z/27t, and will be made sharper by increasing 
s. We anticipate that numerical quadrature will be least accurate in this range. 

Three routines were chosen from the system library [5]. The Gauss-Laguerre rule 
was suitable for the semi-infinite range of integration whilst the Gauss-Legendre 2 
and Patterson interlaced rules used a finite range. After some experimentation the end 
point e = z + 30/s was used, at which the integrand in (3) is O(exp(-30)). A check 
was made upon the resulting residual error by repeating the quadrature over [e, 2e]. 
Seen in Table I these rules gave similar results. They are comparable with the 
algebraic series in the range z = lop3 - lo-‘, s = IO*, 103; everywhere else they are 
poorer. End point e varied from 3 x lo-* for large s to 3 x lo4 for small s, where the 
oscillatory nature of the integrand at high z eluded the routines. 

Integral (3) may be re-expressed over a finite range. From the definition 

I,= lm 
i exp[--s(yl- z sin w)] dty, 
(n-l)lr 

(24) 
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a straightforward calculation leads to 

I eCznSIn, e-2 = 

from which 

I(Q, 2, s) = (1 - e-2ns)-1 Iz exp[--s(v - 2 sin v)] dy/. 

Integral (26) was computed by the Gauss-Legendre method again and denoted by 
Legendre I in Table I. Though the results are clearly superior to the other quadrature 
results the algebraic series still shows the best overall performance, which should be 
used at least throughout the displayed parameter range. I-Iowever, where the product 
zs = O(10’) or higher, the required number of terms approaches 1.00 for high 
accuracy and its reliability may be questioned. 

(b) Three Parameter Problem: 10e3 < y, z, s < lo3 
The methods of calculation generally follow those in (a), subject to the practical 

constraint SY < 150. In Table II the results are summarised and we see a similar 
pattern of comparison to that in Table I. The Gauss-Legendre I routine remains the 
most accurate quadrature except for large s. In turn Legendre 1 does not match either 
the algebraic or Bessel series. For z < 10-l these series are comparable except for 
high s where Bessel has the edge. Overall the algebraic series (6) still has the best 
performance although caution must again be exercised as to the reliability of the 
results at high NT values. 

Integral (1) can be put into an equivalent form 

I( y, z, s) = (1 - eC2”S)-’ i,:z exp[-s(li/ + y cos v - 2 sin w)] do, P-0 

analogous to (26). No special problems arise with Bessel series (IO) but in the 
algebraic series (6) the K, terms are obtained from the second order inhomoge~e~~s 
recurrence relation (9), which raises the question of computational stability. It was 
necessary to examine the growth rates of the complementary and particular solutions, 
identify the required quantities K,, and seek the recursive direction for which the 
growth rate dominates other unwanted solutions. Stability in a given direction wii”; 
depend upon the values of parameters s and E and upon the running integer variable 
rn. The simple stability criterion developed for three-term homogeneous relations 141 
may be extended to this case also. 

From (6) and (12) we see that 

K,=e-SE es@ sinm B de, Gw 

581/44/Z-12 
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from which, because 0 < E < 42, the forward growth rate satisfies 

Km/K,-, < sin E. 6296 

The corresponding growth rate for the complementary functions c, of (9), on 
neglecting I compared with m for simplicity, is 

cgf=Ic,/c,-,/ N (m2/(m2 +s2)y2. 

For the particular solution pm of (9) 

pgf=/~m/pm-r/=~in~, (311 

uniess m = m,, where the inhomogeneous term vanishes if 

m, = s tan E = sy/z. (xq 

These results suggest that K, is to be identified with pm. From (30), (31) and (32) 
the ratio of growth rates is 

For a given choice of y, z, s, parameter plzO is fixed. Then pm will dominate C, in 
forward recursion for m < m, and in backward recursion for m > m,. 

The various regimes of behaviour are shown in Table III. We distinguish between 
‘“absolute” and “marginal” stability by reserving ‘“A” to mean that the K, growt 
rate is at least an order of magnitude greater than the c, growth rate in the cho 
direction, whilst by “M” we mean that the corresponding ratio lies between 1 and 1. 

TABLE III 

Numerical Stability of Recursion for K, 

Parameter example 
-- 

range of m, range of m range of a K, stability 9 z s 
-- 

m,< 1 [Lriil a < 10-l ASB lo--’ 10 10-l 
m,< 1 11,+il lo-‘<a<1 MSB I 1 lo-’ 

ho5 4 aQ1 MSB 
l<m,<rii 10 1 

El, 4 l<a MSF 
6<m, [1,4 l<a<lO M§F 10 10-l 10 
rE<m, [Lriil a< 10 ASF 10-l 10-I 10” 

Key: iii = limit of recursion, generally 100; S = stable; 3 = backwards; F 3 f~rw~r~~~ 
M f marginally; A = absolutely. 
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In full forward recursion from m equals 2 to the maximum desired value rii, usually 
100 in the computations, initial conditions (8) determine subsequent K,. In full 
backward recursion from It - 2 to zero, the starting values vii, rii - 1 for K, were 
obtained from (9) in the form 

K, N sinm+’ .5 [(m + 2) cos E - s sin &]/(m + 2)(m + 1). (34) 

These provisional K, were normalised finally by the known K, and K,. It is not 
sufficient to give arbitrary starting values because the problem is not linear due to the 
inhomogeneous term. For the intermediate case 1 < m, < 6, K, is stable when 
computed towards m, from below and above. Backwards and forwards recursions 
were matched at m,, m, - 1 to give the overall result. 

Examples of y, z, s parameter values suitable for each category are given in 
Table III. The practical restrictions ES, rs < 150 imply that category ASF is encoun- 
tered only when fi is smaller than 100. 

5. CONCLUSION 

The algebraic and Bessel series proved superior to standard quadrature routines 
over most of the parameter range 1O-3 <y, z, s < lo3 that was investigated. Though 
the two series were comparable in the range z < lo-‘, the wider validity of the 
algebraic series gives it a clear advantage both in the two-parameter form (4) to 
represent (3) and in the three-parameter form (6) to represent (1). 
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